Skip to main content

Ride Sharing System Design (like Uber)

Problem Statement

Design a ride-sharing platform that efficiently matches riders with drivers, handles real-time location tracking, pricing, payments, and ensures scalability across multiple cities worldwide.

Requirements

Functional Requirements

  • User registration (riders and drivers)
  • Real-time driver location tracking and updates
  • Ride request and matching with nearby drivers
  • Dynamic pricing based on demand/supply
  • Route navigation and ETA calculation
  • Trip tracking and completion
  • Payment processing and splitting
  • Rating and review system
  • Trip history and receipts
  • Driver earnings and analytics

Non-Functional Requirements

  • Users: 100M riders, 10M drivers globally
  • Requests: 1M ride requests per day
  • Availability: 99.9% uptime
  • Performance: Driver matching < 5 seconds, location updates < 1 second
  • Scalability: Handle surge pricing during peak hours
  • Consistency: Eventually consistent for location data, strong consistency for payments

Capacity Estimation

Traffic

  • 1M ride requests/day = ~12 requests/second average
  • Peak hours: 5x average = 60 requests/second
  • Location updates: 10M drivers × 1 update/4 seconds = 2.5M updates/second
  • Concurrent trips: ~100K trips at any given time

Storage

  • User profiles: 110M users × 1KB = 110GB
  • Trip records: 1M trips/day × 2KB × 365 days × 5 years = 3.65TB
  • Location data: Hot data (24 hours) = 2.5M × 24 × 3600 × 100 bytes = 21.6TB/day

Database Operations

  • Reads: Location queries, driver searches = 10K QPS
  • Writes: Location updates, trip updates = 5K QPS

High-Level Architecture

[Mobile Apps] ← → [Load Balancer] ← → [API Gateway] ← → [Microservices]

[Location Service] ← → [Matching Service] ← → [Trip Service] ← → [Payment Service]
↓ ↓ ↓ ↓
[Redis/Geohash] ← → [QuadTree/Database] ← → [Trip Database] ← → [Payment Gateway]
↓ ↓ ↓ ↓
[Maps Service] ← → [Pricing Service] ← → [Notification Service] ← → [Analytics]

Core Components

1. Location Service

CLASS LocationService:
INITIALIZE:
cache_client = CacheClient()
location_ttl = 300 // 5 minutes

FUNCTION update_driver_location(driver_id, latitude, longitude, heading):
location_data = {
driver_id: driver_id,
lat: latitude,
lng: longitude,
heading: heading,
timestamp: current_timestamp(),
status: get_driver_status(driver_id)
}

// Store in cache with geospatial indexing
cache_key = "driver_locations:" + driver_id
cache_client.set_with_expiry(
cache_key,
location_ttl,
to_json(location_data)
)

// Add to geospatial index for nearby driver queries
cache_client.geo_add(
'active_drivers',
longitude, latitude, driver_id
)

// Update in spatial index for efficient spatial queries
spatial_index_service.update_location(driver_id, latitude, longitude)

RETURN location_data

FUNCTION find_nearby_drivers(latitude, longitude, radius_km, limit):
// Use geospatial query for fast nearby driver lookup
nearby_drivers = cache_client.geo_radius(
'active_drivers',
longitude, latitude,
radius_km, unit: 'km',
with_distance: true,
with_coordinates: true,
sort: 'ASC',
count: limit
)

// Enrich with driver details
driver_details = []
FOR EACH driver_data IN nearby_drivers:
driver_id = driver_data.id
distance = driver_data.distance
coordinates = driver_data.coordinates

// Get additional driver info
driver_info = get_driver_details(driver_id)
driver_info.UPDATE({
distance_km: distance,
current_lat: coordinates.lat,
current_lng: coordinates.lng
})

driver_details.ADD(driver_info)

RETURN driver_details

2. Matching Service

CLASS RideMatchingService:
INITIALIZE:
location_service = LocationService()
pricing_service = PricingService()
notification_service = NotificationService()

FUNCTION request_ride(rider_id, pickup_location, destination, ride_type):
// Create ride request
ride_request = {
id: generate_unique_id(),
rider_id: rider_id,
pickup_lat: pickup_location.lat,
pickup_lng: pickup_location.lng,
destination_lat: destination.lat,
destination_lng: destination.lng,
ride_type: ride_type,
status: 'searching',
created_at: current_timestamp(),
expires_at: current_timestamp() + 5 minutes
}

// Store ride request
database.save_ride_request(ride_request)

// Find available drivers
available_drivers = find_suitable_drivers(pickup_location, ride_type)

IF available_drivers IS EMPTY:
RETURN {
status: 'no_drivers_available',
estimated_wait: estimate_wait_time(pickup_location)
}

// Start matching process
match_result = match_with_drivers(ride_request, available_drivers)

RETURN match_result

FUNCTION find_suitable_drivers(pickup_location, ride_type):
// Get nearby drivers
nearby_drivers = location_service.find_nearby_drivers(
pickup_location.lat,
pickup_location.lng,
radius_km: 10,
limit: 50
)

// Filter suitable drivers
suitable_drivers = []
FOR EACH driver IN nearby_drivers:
IF is_driver_suitable(driver, ride_type):
// Calculate ETA to pickup
eta = maps_service.calculate_eta(
FROM: (driver.current_lat, driver.current_lng),
TO: (pickup_location.lat, pickup_location.lng)
)

driver.pickup_eta_minutes = eta
suitable_drivers.ADD(driver)

// Sort by ETA and rating
SORT suitable_drivers BY (pickup_eta_minutes ASC, rating DESC)

RETURN suitable_drivers[0:10] // Top 10 candidates

FUNCTION match_with_drivers(ride_request, drivers):
// Sequential matching - try drivers one by one
FOR EACH driver IN drivers:
// Send ride request to driver
notification_sent = notification_service.send_ride_request(
driver.id, ride_request
)

IF notification_sent:
// Wait for driver response (with timeout)
response = wait_for_driver_response(
driver.id,
ride_request.id,
timeout: 15 seconds
)

IF response == 'accepted':
// Match successful
RETURN finalize_match(ride_request, driver)
ELSE IF response == 'declined':
// Try next driver
CONTINUE
ELSE:
// Timeout - try next driver
CONTINUE

// No drivers accepted
RETURN {
status: 'no_match_found',
message: 'No drivers accepted the ride request'
}

FUNCTION finalize_match(ride_request, driver):
// Create trip record
trip = {
id: generate_unique_id(),
rider_id: ride_request.rider_id,
driver_id: driver.id,
pickup_lat: ride_request.pickup_lat,
pickup_lng: ride_request.pickup_lng,
destination_lat: ride_request.destination_lat,
destination_lng: ride_request.destination_lng,
status: 'driver_assigned',
estimated_pickup_time: current_timestamp() + driver.pickup_eta_minutes,
created_at: current_timestamp()
}

database.create_trip(trip)

// Update driver status
database.update_driver_status(driver.id, 'en_route_to_pickup')

// Notify both parties
notification_service.notify_match_success(trip)

RETURN {
status: 'matched',
trip_id: trip.id,
driver: driver,
estimated_pickup_time: trip.estimated_pickup_time
}

3. Pricing Service

CLASS PricingService:
INITIALIZE:
base_fare = 2.50
per_mile_rate = 1.75
per_minute_rate = 0.35
surge_multiplier_cache = MAP()

FUNCTION calculate_trip_price(pickup_location, destination, ride_type):
// Calculate distance and time
route_info = maps_service.get_route_info(pickup_location, destination)

distance_miles = route_info.distance_km * 0.621371
estimated_duration_minutes = route_info.duration_seconds / 60

// Base calculation
base_price = base_fare
distance_price = distance_miles * per_mile_rate
time_price = estimated_duration_minutes * per_minute_rate

subtotal = base_price + distance_price + time_price

// Apply ride type multiplier
type_multiplier = get_ride_type_multiplier(ride_type)
subtotal = subtotal * type_multiplier

// Apply surge pricing
surge_multiplier = get_surge_multiplier(pickup_location)
final_price = subtotal * surge_multiplier

RETURN {
base_fare: base_price,
distance_fare: distance_price,
time_fare: time_price,
subtotal: subtotal,
surge_multiplier: surge_multiplier,
total_price: final_price,
currency: 'USD'
}

FUNCTION get_surge_multiplier(location):
// Calculate surge based on supply/demand ratio
grid_id = get_grid_id(location.lat, location.lng)

// Check cache first
cache_key = "surge:" + grid_id
cached_surge = surge_multiplier_cache.get(cache_key)
IF cached_surge EXISTS AND cached_surge.expires > current_timestamp():
RETURN cached_surge.multiplier

// Calculate current supply/demand
supply_demand = calculate_supply_demand(grid_id)

IF supply_demand.demand == 0:
surge_multiplier = 1.0
ELSE:
ratio = supply_demand.supply / supply_demand.demand

IF ratio >= 1.0:
surge_multiplier = 1.0 // No surge
ELSE IF ratio >= 0.5:
surge_multiplier = 1.2
ELSE IF ratio >= 0.3:
surge_multiplier = 1.5
ELSE IF ratio >= 0.1:
surge_multiplier = 2.0
ELSE:
surge_multiplier = 3.0 // Maximum surge

// Cache for 2 minutes
surge_multiplier_cache[cache_key] = {
multiplier: surge_multiplier,
expires: current_timestamp() + 120
}

RETURN surge_multiplier

FUNCTION calculate_supply_demand(grid_id):
// Get grid bounds
grid_bounds = get_grid_bounds(grid_id)

// Count available drivers in grid
available_drivers = location_service.count_drivers_in_area(
grid_bounds, status: 'available'
)

// Count pending ride requests in grid
pending_requests = database.count_pending_requests_in_area(grid_bounds)

RETURN {
supply: available_drivers,
demand: pending_requests
}

4. Database Schema

// Users table
TABLE users:
id: BIGINT (PRIMARY KEY, AUTO_INCREMENT)
phone_number: STRING(15) (UNIQUE, NOT NULL)
email: STRING(255) (UNIQUE)
first_name: STRING(50)
last_name: STRING(50)
user_type: ENUM('rider', 'driver', 'both') (DEFAULT: 'rider')
profile_image_url: TEXT
created_at: TIMESTAMP (DEFAULT: CURRENT_TIME)

INDEXES:
(phone_number)
(email)

// Drivers table (additional driver-specific info)
TABLE drivers:
user_id: BIGINT (PRIMARY KEY, FOREIGN KEY)
license_number: STRING(50) (UNIQUE, NOT NULL)
vehicle_make: STRING(50)
vehicle_model: STRING(50)
vehicle_year: YEAR
vehicle_color: STRING(30)
license_plate: STRING(20)
status: ENUM('available', 'busy', 'offline') (DEFAULT: 'offline')
current_lat: DECIMAL(10, 8)
current_lng: DECIMAL(11, 8)
rating: DECIMAL(3, 2) (DEFAULT: 5.00)
total_trips: INTEGER (DEFAULT: 0)
earnings_total: DECIMAL(10, 2) (DEFAULT: 0)
last_location_update: TIMESTAMP
created_at: TIMESTAMP (DEFAULT: CURRENT_TIME)

INDEXES:
(status, current_lat, current_lng)
(rating)

// Trips table (partitioned by created_at)
TABLE trips:
id: STRING(36) (PRIMARY KEY)
rider_id: BIGINT (FOREIGN KEY)
driver_id: BIGINT (FOREIGN KEY)
pickup_lat: DECIMAL(10, 8) (NOT NULL)
pickup_lng: DECIMAL(11, 8) (NOT NULL)
pickup_address: TEXT
destination_lat: DECIMAL(10, 8)
destination_lng: DECIMAL(11, 8)
destination_address: TEXT
status: ENUM('requested', 'driver_assigned', 'driver_arrived', 'in_progress', 'completed', 'cancelled')
requested_at: TIMESTAMP (DEFAULT: CURRENT_TIME)
started_at: TIMESTAMP (NULLABLE)
completed_at: TIMESTAMP (NULLABLE)
distance_km: DECIMAL(8, 2)
duration_minutes: INTEGER
fare_amount: DECIMAL(8, 2)
surge_multiplier: DECIMAL(3, 2) (DEFAULT: 1.00)
payment_method: STRING(20)
payment_status: ENUM('pending', 'completed', 'failed') (DEFAULT: 'pending')
rider_rating: TINYINT
driver_rating: TINYINT

INDEXES:
(rider_id, requested_at DESC)
(driver_id, requested_at DESC)
(status, requested_at)

PARTITIONING: RANGE BY YEAR(requested_at)
PARTITION p2023: VALUES < 2024
PARTITION p2024: VALUES < 2025
PARTITION p2025: VALUES < 2026

// Trip locations (for real-time tracking)
TABLE trip_locations:
id: BIGINT (PRIMARY KEY, AUTO_INCREMENT)
trip_id: STRING(36) (FOREIGN KEY)
lat: DECIMAL(10, 8) (NOT NULL)
lng: DECIMAL(11, 8) (NOT NULL)
recorded_at: TIMESTAMP (DEFAULT: CURRENT_TIME)

INDEXES:
(trip_id, recorded_at)

// Payments table
TABLE payments:
id: STRING(36) (PRIMARY KEY)
trip_id: STRING(36) (FOREIGN KEY)
amount: DECIMAL(8, 2) (NOT NULL)
currency: STRING(3) (DEFAULT: 'USD')
payment_method: STRING(50)
payment_gateway_id: STRING(100)
status: ENUM('pending', 'processing', 'completed', 'failed', 'refunded')
created_at: TIMESTAMP (DEFAULT: CURRENT_TIME)
completed_at: TIMESTAMP (NULLABLE)

INDEXES:
(trip_id)
(status, created_at)

Detailed Questions & Answers

Q1: How do you efficiently find nearby drivers?

Answer: Multi-layered geospatial indexing approach:

1. Redis Geospatial Index

class GeospatialIndex:
def __init__(self):
self.redis_client = redis.Redis()

async def update_driver_location(self, driver_id, lat, lng):
# Add/update driver location in Redis geospatial index
await self.redis_client.geoadd('active_drivers', lng, lat, driver_id)

# Set TTL for automatic cleanup of inactive drivers
await self.redis_client.expire(f"driver:{driver_id}", 300)

async def find_nearby_drivers(self, lat, lng, radius_km=10):
# Use GEORADIUS to find drivers within radius
nearby = await self.redis_client.georadius(
'active_drivers', lng, lat, radius_km,
unit='km', withdist=True, sort='ASC'
)

return [(driver_id, distance) for driver_id, distance in nearby]

2. QuadTree for Hierarchical Search

class QuadTree:
def __init__(self, bounds, max_points=10, max_depth=6):
self.bounds = bounds # (min_lat, min_lng, max_lat, max_lng)
self.max_points = max_points
self.max_depth = max_depth
self.points = []
self.children = []
self.divided = False

def insert(self, point):
# point = {'id': driver_id, 'lat': lat, 'lng': lng}
if not self.contains(point):
return False

if len(self.points) < self.max_points and not self.divided:
self.points.append(point)
return True

if not self.divided:
self.subdivide()

// Try to insert in children
FOR EACH child IN children:
IF child.insert(point):
RETURN true

RETURN false

FUNCTION query_range(range_bounds):
// Find all points within the given bounds
found_points = []

IF NOT intersects(range_bounds):
RETURN found_points

// Check points in this node
FOR EACH point IN points:
IF point_in_range(point, range_bounds):
found_points.ADD(point)

// Check children if divided
IF divided:
FOR EACH child IN children:
found_points.EXTEND(child.query_range(range_bounds))

RETURN found_points

3. Database Index Optimization

// Spatial index for efficient geo queries
CREATE SPATIAL INDEX idx_driver_location ON drivers(GEOSPATIAL_POINT(current_lng, current_lat))

// Query nearby drivers using spatial functions
QUERY:
SELECT
user_id,
current_lat,
current_lng,
DISTANCE_SPHERE(
GEOSPATIAL_POINT(current_lng, current_lat),
GEOSPATIAL_POINT(target_lng, target_lat)
) / 1000 as distance_km
FROM drivers
WHERE status = 'available'
AND DISTANCE_SPHERE(
GEOSPATIAL_POINT(current_lng, current_lat),
GEOSPATIAL_POINT(target_lng, target_lat)
) <= radius_meters
ORDER BY distance_km
LIMIT 20

Q2: How do you handle driver-rider matching at scale?

Answer: Intelligent matching algorithm with multiple strategies:

1. Smart Matching Algorithm

class IntelligentMatcher:
def __init__(self):
self.matching_strategies = [
'closest_driver',
'shortest_eta',
'highest_rated',
'load_balancing'
]

async def find_best_match(self, ride_request, available_drivers):
# Score each driver based on multiple factors
driver_scores = []

for driver in available_drivers:
score = await self.calculate_match_score(ride_request, driver)
driver_scores.append({
'driver': driver,
'score': score
})

# Sort by score (highest first)
driver_scores.sort(key=lambda x: x['score'], reverse=True)

return [item['driver'] for item in driver_scores]

async def calculate_match_score(self, ride_request, driver):
score = 0

# Distance factor (closer is better)
distance_km = driver['distance_km']
distance_score = max(0, 10 - distance_km) # Max 10 points
score += distance_score * 0.4 # 40% weight

# ETA factor (faster pickup is better)
eta_minutes = driver['pickup_eta_minutes']
eta_score = max(0, 15 - eta_minutes) # Max 15 points
score += eta_score * 0.3 # 30% weight

// Driver rating (higher rating is better)
rating_score = driver.rating // 0-5 scale
score = score + (rating_score * 0.2) // 20% weight

// Driver utilization (balance load)
utilization_score = get_utilization_bonus(driver.id)
score = score + (utilization_score * 0.1) // 10% weight

RETURN score

FUNCTION get_utilization_bonus(driver_id):
// Give bonus to drivers with fewer recent trips (load balancing)
recent_trips = database.count_recent_trips(driver_id, hours: 2)

IF recent_trips == 0:
RETURN 2.0 // Bonus for inactive drivers
ELSE IF recent_trips <= 2:
RETURN 1.0
ELSE:
RETURN 0.0

2. Batch Matching for Efficiency

CLASS BatchMatcher:
FUNCTION process_matching_batch(pending_requests):
// Group requests by geographic area for efficient processing
geographic_groups = group_by_geography(pending_requests)

matching_tasks = []
FOR EACH group IN geographic_groups:
task = process_geographic_group(group)
matching_tasks.ADD(task)

// Process all groups in parallel
results = EXECUTE_ALL_PARALLEL(matching_tasks)

RETURN flatten_results(results)

FUNCTION group_by_geography(requests):
// Use geohash to group nearby requests
groups = MAP()

FOR EACH request IN requests:
geohash = ENCODE_GEOHASH(
request.pickup_lat,
request.pickup_lng,
precision: 6 // ~1km precision
)

IF geohash NOT IN groups:
groups[geohash] = []
groups[geohash].ADD(request)

RETURN VALUES(groups)

FUNCTION process_geographic_group(requests):
IF requests IS EMPTY:
RETURN []

// Find drivers for this geographic area
center_lat = AVERAGE(r.pickup_lat FOR r IN requests)
center_lng = AVERAGE(r.pickup_lng FOR r IN requests)

available_drivers = location_service.find_nearby_drivers(
center_lat, center_lng, radius_km: 15, limit: 100
)

// Match requests to drivers using optimal assignment algorithm
matches = optimal_assignment(requests, available_drivers)

RETURN matches

Q3: How do you implement real-time trip tracking?

Answer: WebSocket-based real-time updates with efficient data handling:

1. Real-time Location Updates

class TripTrackingService:
def __init__(self):
self.websocket_manager = WebSocketManager()
self.location_buffer = {}

async def start_trip_tracking(self, trip_id, rider_id, driver_id):
# Create tracking session
tracking_session = {
'trip_id': trip_id,
'rider_id': rider_id,
'driver_id': driver_id,
'started_at': datetime.now(),
'last_update': None
}

# Store in cache for fast access
await self.redis_client.setex(
f"tracking:{trip_id}",
3600,
json.dumps(tracking_session)
)

# Subscribe both parties to trip updates
await self.websocket_manager.subscribe_to_trip(rider_id, trip_id)
await self.websocket_manager.subscribe_to_trip(driver_id, trip_id)

return tracking_session

async def update_trip_location(self, trip_id, driver_id, lat, lng, heading=None):
location_update = {
'trip_id': trip_id,
'driver_id': driver_id,
'lat': lat,
'lng': lng,
'heading': heading,
'timestamp': time.time()
}

# Buffer location updates to avoid database overload
if trip_id not in self.location_buffer:
self.location_buffer[trip_id] = []

self.location_buffer[trip_id].append(location_update)

# Flush buffer every 10 updates or 30 seconds
if (len(self.location_buffer[trip_id]) >= 10 or
time.time() - self.location_buffer[trip_id][0]['timestamp'] > 30):
await self.flush_location_buffer(trip_id)

# Real-time update to rider
tracking_session = await self.get_tracking_session(trip_id)
if tracking_session:
await self.websocket_manager.send_location_update(
tracking_session['rider_id'], location_update
)

return location_update

async def flush_location_buffer(self, trip_id):
if trip_id not in self.location_buffer:
return

locations = self.location_buffer[trip_id]
self.location_buffer[trip_id] = []

# Batch insert to database
await self.db.batch_insert_trip_locations(locations)

2. ETA Calculation and Updates

class ETAService:
def __init__(self):
self.maps_client = GoogleMapsClient()
self.eta_cache = {}

async def calculate_eta(self, current_location, destination, trip_id=None):
# Check cache first (for repeated calculations)
cache_key = f"eta:{current_location['lat']:.4f},{current_location['lng']:.4f}:{destination['lat']:.4f},{destination['lng']:.4f}"

cached_eta = self.eta_cache.get(cache_key)
if cached_eta and time.time() - cached_eta['timestamp'] < 120: # 2 minutes
return cached_eta['eta_seconds']

# Calculate using Maps API
route_info = await self.maps_client.get_directions(
origin=(current_location['lat'], current_location['lng']),
destination=(destination['lat'], destination['lng']),
traffic_aware=True
)

eta_seconds = route_info['duration_in_traffic']

# Cache result
self.eta_cache[cache_key] = {
'eta_seconds': eta_seconds,
'timestamp': time.time()
}

return eta_seconds

async def update_trip_eta(self, trip_id, driver_location):
trip_info = await self.db.get_trip_info(trip_id)

if trip_info['status'] == 'driver_assigned':
# ETA to pickup
destination = {
'lat': trip_info['pickup_lat'],
'lng': trip_info['pickup_lng']
}
elif trip_info['status'] in ['driver_arrived', 'in_progress']:
# ETA to destination
destination = {
'lat': trip_info['destination_lat'],
'lng': trip_info['destination_lng']
}
else:
return None

eta_seconds = await self.calculate_eta(driver_location, destination, trip_id)

# Update rider with new ETA
eta_update = {
'trip_id': trip_id,
'eta_seconds': eta_seconds,
'eta_minutes': eta_seconds // 60,
'updated_at': datetime.now().isoformat()
}

await self.websocket_manager.send_eta_update(
trip_info['rider_id'], eta_update
)

return eta_update

Q4: How do you handle payment processing securely?

Answer: Multi-layered payment system with fraud detection:

1. Payment Processing Service

class PaymentService:
def __init__(self):
self.stripe_client = stripe
self.fraud_detector = FraudDetectionService()

async def process_trip_payment(self, trip_id, payment_method_id):
trip = await self.db.get_trip_details(trip_id)

# Calculate final fare (including any adjustments)
final_fare = await self.calculate_final_fare(trip)

# Fraud detection
fraud_risk = await self.fraud_detector.assess_risk(trip, final_fare)

if fraud_risk['risk_level'] == 'high':
return await self.handle_high_risk_payment(trip, final_fare, fraud_risk)

# Process payment
payment_intent = await self.create_payment_intent(
amount=int(final_fare * 100), # Stripe uses cents
payment_method=payment_method_id,
metadata={
'trip_id': trip_id,
'rider_id': trip['rider_id'],
'driver_id': trip['driver_id']
}
)

try:
# Confirm payment
confirmed_payment = await self.stripe_client.PaymentIntent.confirm(
payment_intent.id
)

if confirmed_payment.status == 'succeeded':
# Payment successful
await self.handle_successful_payment(trip, confirmed_payment, final_fare)

# Initiate driver payout
await self.schedule_driver_payout(trip['driver_id'], final_fare)

return {
'status': 'success',
'payment_id': confirmed_payment.id,
'amount': final_fare
}
else:
# Payment failed
await self.handle_failed_payment(trip_id, confirmed_payment)
return {
'status': 'failed',
'error': 'Payment processing failed'
}

except stripe.error.CardError as e:
# Card was declined
await self.handle_card_declined(trip_id, e)
return {
'status': 'failed',
'error': str(e)
}

async def calculate_final_fare(self, trip):
base_fare = trip['fare_amount']

# Add any surge multiplier
surge_amount = base_fare * (trip['surge_multiplier'] - 1)

# Add tips if any
tip_amount = trip.get('tip_amount', 0)

# Add taxes and fees
tax_rate = 0.08 # 8% tax
service_fee = 1.50

subtotal = base_fare + surge_amount + tip_amount
tax_amount = subtotal * tax_rate

total = subtotal + tax_amount + service_fee

return round(total, 2)

async def schedule_driver_payout(self, driver_id, trip_fare):
# Calculate driver earnings (85% of fare after fees)
service_commission = 0.15 # 15% commission
driver_earnings = trip_fare * (1 - service_commission)

# Create payout record
payout_record = {
'driver_id': driver_id,
'amount': driver_earnings,
'trip_id': trip_id,
'status': 'pending',
'scheduled_at': datetime.now() + timedelta(hours=24) # Daily payouts
}

await self.db.create_payout_record(payout_record)

return payout_record

2. Fraud Detection System

class FraudDetectionService:
def __init__(self):
self.ml_model = FraudDetectionModel()

async def assess_risk(self, trip, fare_amount):
risk_factors = []
risk_score = 0

# Geographic anomalies
if await self.is_unusual_route(trip):
risk_factors.append('unusual_route')
risk_score += 0.3

# Fare anomalies
expected_fare = await self.calculate_expected_fare(trip)
if abs(fare_amount - expected_fare) / expected_fare > 0.5: # 50% deviation
risk_factors.append('fare_anomaly')
risk_score += 0.4

# User behavior patterns
user_risk = await self.assess_user_risk(trip['rider_id'])
risk_score += user_risk * 0.3

# Time-based patterns
if await self.is_suspicious_timing(trip):
risk_factors.append('suspicious_timing')
risk_score += 0.2

# ML model prediction
ml_risk = await self.ml_model.predict_fraud_risk(trip)
risk_score += ml_risk * 0.5

# Determine risk level
if risk_score > 0.8:
risk_level = 'high'
elif risk_score > 0.5:
risk_level = 'medium'
else:
risk_level = 'low'

return {
'risk_level': risk_level,
'risk_score': risk_score,
'risk_factors': risk_factors
}

Q5: How do you handle surge pricing during high demand?

Answer: Dynamic pricing algorithm with machine learning predictions:

1. Surge Pricing Algorithm

class SurgePricingService:
def __init__(self):
self.demand_predictor = DemandPredictionService()
self.supply_tracker = SupplyTrackingService()

async def calculate_surge_multiplier(self, location, current_time=None):
if not current_time:
current_time = datetime.now()

# Get geographical area (grid cell)
grid_id = self.get_grid_id(location['lat'], location['lng'])

# Calculate current supply/demand ratio
supply_demand = await self.get_current_supply_demand(grid_id)

# Predict demand for next 30 minutes
predicted_demand = await self.demand_predictor.predict_demand(
grid_id, current_time, horizon_minutes=30
)

# Calculate base surge multiplier
base_multiplier = self.calculate_base_surge(
supply_demand['supply'],
supply_demand['demand']
)

# Adjust for predicted demand
demand_adjustment = self.calculate_demand_adjustment(
predicted_demand, supply_demand['supply']
)

# Apply smoothing to prevent dramatic price swings
current_multiplier = await self.get_current_multiplier(grid_id)
smoothed_multiplier = self.smooth_multiplier_change(
current_multiplier, base_multiplier * demand_adjustment
)

# Cap maximum surge
final_multiplier = min(smoothed_multiplier, 5.0) # Max 5x surge

# Cache the result
await self.cache_multiplier(grid_id, final_multiplier, ttl=120) # 2 minutes

return final_multiplier

def calculate_base_surge(self, supply, demand):
if demand == 0:
return 1.0

ratio = supply / demand

# Surge multiplier based on supply/demand ratio
if ratio >= 1.0:
return 1.0 # No surge needed
elif ratio >= 0.7:
return 1.2
elif ratio >= 0.5:
return 1.5
elif ratio >= 0.3:
return 2.0
elif ratio >= 0.1:
return 3.0
else:
return 4.0

async def get_current_supply_demand(self, grid_id):
grid_bounds = self.get_grid_bounds(grid_id)

# Count available drivers in the area
available_drivers = await self.supply_tracker.count_available_drivers(
grid_bounds
)

# Count pending ride requests
pending_requests = await self.db.count_pending_requests(grid_bounds)

# Count in-progress trips (these reduce effective supply)
ongoing_trips = await self.db.count_ongoing_trips(grid_bounds)

effective_supply = max(0, available_drivers - ongoing_trips * 0.5)

return {
'supply': effective_supply,
'demand': pending_requests,
'ratio': effective_supply / max(1, pending_requests)
}

2. Demand Prediction Service

class DemandPredictionService:
def __init__(self):
self.ml_model = DemandPredictionModel()
self.weather_service = WeatherService()
self.events_service = EventsService()

async def predict_demand(self, grid_id, current_time, horizon_minutes=30):
# Historical demand patterns
historical_data = await self.get_historical_demand(
grid_id, current_time, lookback_days=30
)

# Weather impact
weather_data = await self.weather_service.get_current_weather(grid_id)
weather_multiplier = self.calculate_weather_impact(weather_data)

# Special events impact
events = await self.events_service.get_nearby_events(
grid_id, current_time, horizon_minutes
)
events_multiplier = self.calculate_events_impact(events)

# Time-based patterns (rush hour, weekend, etc.)
time_multiplier = self.calculate_time_multiplier(current_time)

# Base prediction from historical data
base_prediction = np.mean([d['demand'] for d in historical_data])

# Apply multipliers
predicted_demand = (
base_prediction *
weather_multiplier *
events_multiplier *
time_multiplier
)

# Use ML model for refinement
features = self.extract_features(
grid_id, current_time, weather_data, events, historical_data
)

ml_prediction = await self.ml_model.predict(features)

# Combine predictions (weighted average)
final_prediction = (
predicted_demand * 0.6 + # 60% rule-based
ml_prediction * 0.4 # 40% ML-based
)

return max(0, final_prediction)

def calculate_weather_impact(self, weather_data):
# Rain increases demand
if weather_data.get('precipitation_mm', 0) > 2:
return 1.5
elif weather_data.get('precipitation_mm', 0) > 0.5:
return 1.2

# Extreme temperatures increase demand
temp_c = weather_data.get('temperature_c', 20)
if temp_c < 0 or temp_c > 35:
return 1.3
elif temp_c < 5 or temp_c > 30:
return 1.1

return 1.0

Advanced Scenarios

Scenario 1: Airport Surge Management

Challenge: Handle massive demand spikes at airports during flight arrivals.

Solution:

  1. Predictive Positioning: Use flight data APIs to predict demand
  2. Driver Incentives: Offer bonuses to attract drivers to airport areas
  3. Queue Management: Implement virtual driver queues at pickup zones
  4. Dynamic Geofencing: Adjust pickup/dropoff zones based on capacity

Scenario 2: Natural Disaster Response

Challenge: Provide emergency transportation during natural disasters.

Solution:

  1. Emergency Mode: Activate surge caps and prioritize essential trips
  2. Resource Reallocation: Redirect drivers from low-priority areas
  3. Partnership Integration: Coordinate with emergency services
  4. Communication System: Broadcast emergency information to users

Scenario 3: Multi-City Service Expansion

Challenge: Scale to hundreds of cities with different regulations.

Solution:

  1. Microservices Architecture: City-specific service configurations
  2. Regulatory Compliance: Automated compliance checking per jurisdiction
  3. Localized Pricing: Region-specific pricing models and payment methods
  4. Cultural Adaptation: Customize user experience for local preferences

This comprehensive ride-sharing system design covers location tracking, matching algorithms, pricing strategies, and handles the complex challenges of a global transportation platform.